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Interstitial solid solutions could be formed at the matrix–fibre interface in the processing of
metal matrix composites. Typically these solutions are of small concentrations and the
solubility is usually diffusion-controled. To calculate the diffusivity, a model of the
interstitial solid solution is used which gives the possibility of choosing whether octahedral
or tetrahedral interstitial positions are occupied by the fibre atoms dissolved in the matrix.
Analysis of Ag–C and Cu–C solid solutions allow a comparison of the occupation of the
interstitial positions and its temperature dependences. The results obtained on the basis of
non-empirical calculations predict the preferable occupation of octahedral positions up to
T ∼ 1200 K. This confirms the structure of the interstitial solid solution. In the framework of
this model we calculate the heights of diffusion barriers and the temperature dependences
of carbon diffusion in silver and copper hosts. C© 1999 Kluwer Academic Publishers

1. Introduction
The stability of the silver- and copper-matrix MMC
with carbon (Ag/C and Cu/C) has been investigated
previously [1–3]. By adding graphite fibres it is possi-
ble to obtain improved friction properties because of the
lubricating properties of carbon. Silver-based compos-
ites are one of the most acceptable materials used for
low-voltage circuit breakers. They exibit low arc ero-
sion and low contact resistance [4]. The system Cu/C
shows good thermal, electrical and mechanical proper-
ties in comparison with other copper-based MMC (see
[5]). The character of the physico-chemical bonding in
the reaction zone of Cu/C and Ag/C interfaces has not
yet been investigated. Gnesin and Naidich [2] studied
the wetting between liquid copper and SiC, and found
that in alloys there was an interaction zone CuSi+C.
Small amounts of silicon dispersed in the matrix sup-
press the interaction of copper with SiC. Carbon is in-
soluble in copper up to very high temperatures; its sol-
ubility does not exceed 0.02 at %. Thus a problem can
arise with the wettability of carbon fibres by copper.
This wettability is extraordinaruy small [6] and does
not allow the composite material to be fabricated. Thus
the interfacial bonding in copper–carbon composites
is extremely weak [7]. Increasing interfacial strength
for Cu–C is generally achieved in two ways: forcing
a fibre reaction with the matrix, and making the ma-

trix dissolve the carbon fibre. Sun and Zhang [7] stud-
ied the increase of interfacial strength by adding iron
and nickel to copper. They showed that, in the case of
iron doping, the Fe3C carbides are formed at the inter-
face, realizing the chemical reaction bonding. Nickel,
on the contrary, does not lead to the desirable effect
and only dissolves small amounts of carbon fibres (dis-
solution bonding). The influence of the oxidation of
copper-coated carbon fibres on the thermal stability of
the coating was discussed elsewhere [8]. The formation
of very dilute Cu–C interstitial alloys at the interface
may be diffusion-controlled. Sueryet al. [3] used car-
bon fibres and nickel-coated carbon fibres for the for-
mation of silver-based composites. The main problem
with the development of these metal–matrix compos-
ites is the poor wetting characteristic of the fibres by
liquid silver (see [9]). Sometimes, the reactivity of car-
bon with many metals may be a barrier for composite
fabrication. In the case of silver, reaction does not oc-
cur, so the technique may be employed only to improve
wetting properties. To predict the diffusion behaviour
of carbon it is necessary to study structure and inter-
atomic interactions in such alloys.

In order to write the expression for the energy of
the interstitial atom in different positions, it is possi-
ble to use the pertubation series on potentials in re-
ciprocal space (PSP RS method). It is evident that this
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approximation will only roughly describe the basic par-
ticularities of the electronic spectrum of the solutions.
This is especially true for the solutions where transi-
tion metals are chosen as alloying elements. However,
as thermodynamic values are always obtained as a result
of averaging over the spectrum, they are less sensitive
to its particularities than, for example, optical charac-
teristics [10]. That is why we believe that the PSP RS
method can be applied to material science problems,
such as the determination of the tendencies in the vari-
ation of the alloy thermodynamic functions in alloying,
or to other problems determining the quantities, which
are not too sensitive to details of the electron energy
spectrum of metals and alloys.

Making use of the PSP RS method, we calculated
the potentials of Ag–Ag, Cu–Cu, Ag–C, Cu–C, and
C–C interactions in Ag–C and Cu–C alloys. The use
of these potentials is two-fold. A study of occupations
of tetrahedral and octahedral interatomic positions by
carbon atoms was carried out on the basis of statistical
thermodynamics with the obtained potentials. By ex-
ploring this result and the same interatomic potentials,
the height of the diffusion barriers for a carbon atom
which passes between the nearest interstitial positions
and predict the diffusivity of carbon in silver and copper
matrices, can be calculated.

As a final step we studied the changes in the diffu-
sion of carbon atoms in a copper matrix with different
alloying elements. The tendency to decrease the dif-
fusivity of carbon in the presence of an additive may
promote the formation of carbides at the interface, thus
favouring adhesion. On the contrary, increasing the dif-
fusivity of carbon in the matrix with dopants prevents
the formation of carbide and does not lead to the desired
effect. We assumed that carbon atoms in host matrices
form a dilute interstitial solid solution, where carbon
occupies the interstices.

The idea of “averaged” or “effective” interaction was
used for the investigation of the influence of the third
element upon the diffusion process in interstitial alloys.
Assuming that we have a disordered substitutional alloy
A–B and interstitial atoms C occupy the interstitial po-
sitions, in the case of the f c c lattice under investigation,
there are one octahedral and two tetrahedral interstitial
sites per atom. Only positions for interstitial atoms are
considered. These positions also form the f c c lattices.
All interstitial atoms are situated in the mean-field lat-
tice potential. This potential is formed by the silver or
copper and B atoms distributed on the f c c lattice sites.
The diffusivity of carbon atoms in pure silver and cop-
per matrices and in a copper matrix with additives, is
compared.

2. Occupation of interstitial positions
Let us assume that interstitial atoms of carbon, C, oc-
cupy both octahedral and tetrahedral positions in the

no = Mo + n− Mtµ− nµ± [(Mo + n+ Mtµ− nµ)2− 4Mon(1− µ)]1/2

2(1− µ)
(6)

lattice. The number of octahedral positions isMo and
the number of tetrahedral positions isMt . Thus, the total
number of intestitial positions isM =Mo+ Mt . Then
atoms of carbon are placed in the interstial positions in
the following manner:no atoms in octahedral positions
andnt atoms (nt = n− no) in tetrahedral positions. That
part of the total energy of the crystal depending on the
number of interstitial atoms may be written as

E = nouo + ntut (1)

assuming that carbon atoms do not interact with each
other. This assumption is reasonable because the con-
centration of carbon is very small. Hereuo andut are
the energies of carbon atoms in the octahedral and tetra-
hedral positions, respectively. The number of different
permutations of carbon atoms on the interstitial posi-
tions is

L = Mo!

no!(Mo − no)!

Mt !

nt !(Mt − nt )!
(2)

while the entropy of the system,S, is

S= k ln L (3)

wherek is the Boltzmann constant. Substitutingnt =
n− no and making use of the Stirling formula, we ob-
tain the free energyF = E − T S in the form

F = nouo+ (n− no)ut − kT{ln Mo!− no(ln no− 1)

− (Mo− no)[ln(Mo− no)− 1]

+ ln Mt !− (n− no)[ln(n− no)− 1]

− (Mt − n+ no)[ln(Mt − n+ no)− 1]} (4)

Applying the equilibrium conditions∂F/∂no= 0, the
following equation for the equilibrium numbersno and
nt may be obtained

(Mt − nt )(n− nt )

(Mt − n+ no)no
= (Mo − no)nt

(Mt − nt )no
= exp

(
uo − ut

kT

)
(5)

It is easy to see that when the temperature increases, the
system of carbon atoms seeks a uniform distribution of
carbon atoms on the interstitial positions. In this case
(at T →∞) we obtain (nt/no) = (Mt/Mo).

To clarify the temperature dependence ofno andnt ,
Equation 5 may be solved giving
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Here we use the equalitynt = n − no and notified
µ = exp[(uo− ut )/kT]. Using the definition of partial
concentrations of atoms in octahedral and tetrahedral
interstial positionsco = no/n andct = nt/n, respec-
tively, the following result may be obtained

co = α + β ± [(α + β)2− 4β]1/2

2β
(7)

ct = 1− co

whereα = 1+ (Mt/Mo)µ; β = γ (1− µ); andγ =
n/Mo. For relatively smalln, this result has to transform
to the Boltzmann distribution. This condition leads to
the consideration that only the minus sign before [(α+
β)2−4β]1/2 in Equation 7 has to be left and in this case
from Equation 5 it follows that

co =
(

1+ Mt

Mo
µ

)−1

(8a)

ct =
[
1+

(
Mt

Mo
µ

)−1]−1

(8b)

When the valueγ is small, the value ofβ is also small
and the square root may be expanded in Taylor’s series.
Then from Equation 7 in the limiting caseγ → 0 we
getco = 1/αwhich coincides with Equations 8a and b.

In the case of the f c c lattice withN lattice sites,
Mo = N andMt = 2N. Thus, the final expressions for
the concentrationsco andct have the forms

co =
[
1+ 2 exp

(
uo − ut

kT

)]−1

(9)

ct =
[
1+ 1

2
exp

(
ut − uo

kT

)]−1

3. Diffusion of interstitial atoms
The basic idea of effective interaction may become of
use for the investigation of the influence of the third
element upon the diffusion process in interstitial alloys.
We assume that atoms B substitute for atoms A, and
atoms C are placed in the interstitial position. The value
of the energy of atom C in the interstice position,uo, is

ui = −
∑

R

{VAC(R+ hi )C(R)

+VBC(R+ hi )[1− C(R)]} (10)

wherehi is the vector of the position of the atom C.
VAC andVBC are the values of the interaction potentials
between atoms A and C, and B and C, respectively.
C(R) is the spin-like variable

C(R) =


1, if an atom in the lattice siteR

is of the type A

0, if an atom in the lattice siteR

is of the type B

Consequently, the energy of the C atom in the saddle
pointus is

us = −
∑

R

{VAC(R+ hs)C(R)

+VBC(R+ hs)[1− C(R)]} (11)

hs is the vector of the saddle point position. Equa-
tions 10 and 11 reproduce exactly the local atomic con-
figuration in the vicinity of the interstitial atom in the
diffusion process. Consideration of such local effects
is very important in the study of material properties
(see, for example, [11]). Calculations ofūi andūs may
provide the necessary information on the influence of
microalloying additives on the diffusion coefficient. On
performing these calculations in the framework of the
cluster approach, one obtains the local values ofūi and
ūs. These quantities have to be averaged to account for
the influence of a crystal medium [12].

The alternative way is to introduce the distribution of
atoms in A–B substitutional solid solution. This distri-
bution may be described by one occupation probability
functionn(R) that is the probability of finding the atom
A at the siteR of the crystal lattice

n(R) = 〈C(R)〉 (12)

where the averaging is done over the Gibbs’ canonical
ensemble. Performing such averaging we may rewrite
Equations 10 and 11

ūi = −
∑

R

{VAC(R+ hi )n(R)

+VBC(R+ hi )[1− n(R)]} (13)

ūs = −
∑

R

{VAC(R+ hs)n(R)

+VBC(R+ hs)[1− n(R)]} (14)

Analogous averaging was done by Khachaturyan [13]
to describe the ordering effects in a binary substitutional
solid solution. Let us consider the case where all po-
sitions of crystal lattice sites{R} are described by one
Bravais lattice. Following the works of Khachaturyan
(see [13] and references therein), the functionn(R),
which determines the distribution of the solute atoms
in an ordering phase, can be expanded in a Fourier se-
ries. It may be represented as a superposition of static
concentration waves (SCW)

n(R)= ca+ 1

2

∑
j

[Q(k j ) ei k j R+ Q∗(k j ) e−i k j R] (15)

whereca is a concentration of A-type atoms,exp(i k j R)
is a static concentration wave,k j is a non-zero wave
vector defined in the first Brillouin zone of the dis-
ordered binary A–B alloy, indexj denotes the wave
vectors in the Brillouin zone,Q(k j ) is a static concen-
tration wave amplitude. As shown by Khachaturyan
[13], all Q(k j ) are the linear functions of the long-
range order parameters of the superlattices that may be
formed on the basis of the Ising lattice of the disordered
solid solution. In the alloy with a small concentration
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of one of the components it is possible to assume the
existence of a disordered solid solution. The small con-
centration of the B atoms immediately leads to the dis-
appearance of the ordering state and allQ(k j ) become
equal to zero.

We consider now a disordered substitutional alloy
A–B with interstitial atoms C. In the case of the f c c
lattice studied here, there are one octahedral and two
tetrahedral interstitial sites per atom. We shall consider
only the octahedral positions for interstitial atoms. This
model follows from the results of the calculations for
occupation probabilities for Cu–C which will be dis-
cussed in the next section. These octahedral positions
are also forming the f c c lattice and, in the case of com-
pletely disordered solid solution, they are energetically
equivalent. All interstitial atoms are situated in the same
mean-field lattice potential. This potential is formed by
the A and B types of atoms randomly distributed on the
f c c lattice sites. Making use of the above described av-
eraging, it is possible to calculate the influence of alloy-
ing elements upon the diffusion of fibre atoms (named
C) in the matrix (atoms A). The concentrations of atoms
of sort A and B will beca andcb, respectively. Taking
into account only the first and second nearest neigh-
bours, we have from Equations 13 and 14

ūi = −
[
6(cavac+ cbvbc)+ 8

(
cav
′′′
ac+ cbv

′′′
bc

)]
(16)

ūs = −
[
2
(
cav
′
ac+ cbv

′
bc

)+ 4
(
cav
′′
ac+ cbv

′′
bc

)]
where vac=Vac(a/2), v′ac=Vac(a

√
2/4), v′′ac=

Vac(a
√

6/4), v′′′ac=Vac(a
√

3/2), vbc=Vbc(a/2), v′bc=
Vbc(a

√
2/4), v′′bc=Vbc(a

√
6/4), v′′′bc=Vbc(a

√
3/2)

are the values of the interatomic interaction energies
determined from the values of interatomic interaction
potentialsVac andVbc between atoms of sort A and C,
and B and C, respectively.a is the lattice parameter
of the alloy. We used in our calculations the model
potential from Bacheletet al. [14]. The height of
potential barrier is

1U = |ūs− ūi | =
∣∣(6vac+ 8v′′′ac− 2v′ac− 4v′′ac

)
ca

+ (6vbc+ 8v′′′bc− 2vbc− 4v′′bc

)
cb

∣∣ (17)

The values in brackets here have the sense of the heights
of barriers1Ua and1Ub in the diffusion process of
C atoms in the metals A and B with an f c c lattice.
The diffusion coefficient of C atoms that are situated in
the octahedral interstices of disordered substitutional
solid solution A–B with an f c c lattice, may be ob-
tained by substituting this expression into Arrhenius-
type formulae

D∼ exp

(
−1U

kT

)
(18)

giving

D∼ exp

(
−ca1Ua + cb1Ub

kT

)
(19)

It is easy to see that the activation energy in our approx-
imation is a linear function of concentrationca. Let us

turn now to the study of the changes of pre-exponential
factors caused by alloying. The Gibbs’ free energy of
migration includes the entropy term and the pressure-
dependent term. The last can be neglected because we
are studying the diffusion process at the atmospheric
pressure that in our units is approximately zero. The
entropy of migration in a binary alloy A–C may be cal-
culated, according to Shewmon [15], with our values
for the migration energy,1U

Smig = β1U

Tm
(20)

whereβ ' 0.35 [15] andTm is the melting point. Now
we may write the following relation

Dtern

Dbin
' a2

tern

a2
bin

exp

[
(1−βτ )

kT

(
1Ubin

mig −1Utern
mig

)]
(21)

where Dtern and Dbin are the diffusion coefficients of
the carbon in ternary and binary alloys, respectively,
τ = T/Tm and1Utern

mig and1Ubin
mig are the migration

energy for ternary and binary alloys.
Our model is of the common nature and could be

used for the calculations of diffusivity in the pure host
assuming the atomic fraction of the dopant (C-atoms)
is equal to zero.

4. Results and discussion
Our mean-field calculations in the framework of local
density approximation with semiempirical potentials
show the completely different character of C–C interac-
tion in the matrix of diamond and in the copper matrix.
The same character of C–C interactions is present in the
silver host. In both matrices, the C–C pair potential has
a very strong repulsive tendency and in the diamond
lattice the behaviour of the pair potential is traditional.

The interatomic potential presented in Fig. 1 was
used to calculate the carbon atom energies in different
interstitial positionsuo and ut in the copper and sil-
ver matrix. In these calculations we take into account
the interaction in the first and the second coordina-
tion shell. The energiesuo andut were substituted in
Equation 9 and the temperature dependence of the rel-
ative concentrationsco andct were obtained. They are

Figure 1 The effective pair potentials (——) of Cu–C, and (- - -) Ag–C
in Ag- and Cu-based metal matrix composite.
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Figure 2 Temperature dependences of partial concentrations of carbon
atoms occupying (1) octahedral and (2) tetrahedral interstitial positions
in a copper matrix.

plotted in Fig. 2 for the copper host matrix. An analo-
gous behaviour is obtained for Ag–C.

Our results show clearly that the probability of find-
ing carbon atoms in octahedral positions is much higher
than in tetrahedral ones. This statement will be true up
to a temperatureT ∼ To = 1200K . With the following
increase in the temperature, the occupation probabil-
ity of octahedral positions decreases to 80% for copper
based alloy. Tetrahedral positions will be occupied by
20% of the atoms. Thus we are convinced that the model
of the interstitial diffusion of carbon atoms can be used
in solid solutions with the carbon atoms randomly sit-
uated in octahedral positions. This model is justified
at least up toT ∼ To. Equations 16 and 17 are used to
calculate diffusion barriers. We calculated interatomic
potentials for the ternary alloys (Cu, Ti)–C, (Cu, Al)–C,
and (Cu, Ni)–C making use of mean-field theory and
form-factors of semiempirical potentials from Bachelet
et al. [14]. The concentration of carbon atoms in an
alloy was taken to be very small (∼2× 10−2 at %), and
the concentration of elements that alloy the copper ma-
trix was taken as 0.1 at %. The values of potential bar-
rier,1U , for binary alloys Ag–C and Cu–C are given in
the Table I. We may conclude from analysis of Table I
that alloying of the binary system Cu–C by all studied
additives, increases the height of the potential barrier.

Let us turn now to the study of the changes of
pre-exponential factors caused by alloying. The Gibbs’
free energy of migration includes the entropy term
and the pressure-dependent term. The last can be
neglected because we are studying the diffusion
process at the atmospheric pressure which in our units
is approximately zero. The entropy of migration in
a binary alloy A–C may be calculated, according to

TABLE I Values of diffusion barriers,1U , entropies of migration,
Smig, and the ratioDtern/Dbin for the interstitial silver- and copper-
based alloys with carbon

Host Dopant Smig (104 eV K−1) 1U (eV) Dtern/Dbin

Ag None 8.898 3.16 –
Cu None 2.554 0.990 –
Cu Al 2.603 1.009 0.805
Cu Ni 2.575 0.998 0.912
Cu Ti 2.652 1.028 0.647

Equation 20, with the obtained values for the migration
energy1U . The values of migration entropies,Smig,
are also presented in Table I.

In order to estimate the changes in the diffusion coef-
ficient we have calculated the ratioDtern/Dbin. In these
calculations we used Vegard’s law for the changes of
the lattice parameters in dilute alloys. We have also as-
sumed that the effective frequency of the atomic vibra-
tions for studied alloys is independent of the alloying.
The ratio of lattice constants,a2

tern/a
2
bin, for the (Cu,

Ti)–C alloy only slightly deviates from unity and is
equal to 1.000 65. Thus it is possible to neglect this ef-
fect in studying the changes of diffusion coefficient at
small concentrations. Using the data of Table I, we esti-
mated the ratioDtern/Dbin = 0.647 for (Cu, Ti)–C alloy
at 800 K. The same calculations were performed for
copper-carbon alloy with a set of dopants (see Table I).
All investigated additives decrease the diffusivity of
carbon atoms in a copper matrix. On the basis of the
data in Table I, we predict that the strongest influence
on the diffusion coeficient ratio among the investigated
additives may be achieved by titanium alloying of the
Cu–C system. The predicted reduction of the diffusivity
by a factor of two may be a basis for detailed experi-
mental study of routes of improvement of carbon fibre
interactions with a copper-based matrix.
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